1.概述

本文我们就来聊聊大家日常开发中常用的集合 ———— HashMap。HashMap 最早出现在 JDK 1.2中,底层基于散列算法实现。 HashMap 允许 null 键和 null 值,在计算哈键的哈希值时,null 键哈希值为 0。HashMap 并不保证键值对的顺序,这意味着在进行某些操作后,键值对的顺序可能会发生变化。另外,需要注意的是,HashMap 是非线程安全类,在多线程环境下可能会存在问题。 在多线程环境下创建HashMap实例需要用到一下方法,实现线程安全:

1
Map m = Collections.synchronizedMap(new HashMap(...));

在JDK1.8之后,又引入了红黑树结构,其数据结构变的更加复杂,本文就JDK1.8源码为例,对HashMap进行分析

2.原理

HashMap底层基于散列算法实现,散列算法分为在探测和拉链式,而HashMap 则使用了拉链式的散列算法,并在 JDK 1.8 中引入了红黑树优化过长的链表。

对于拉链式的散列算法,其数据结构是由数组和链表(或树形结构)组成。在进行增删查等操作时,首先要定位到元素的所在桶的位置,之后再从链表中定位该元素。 比如我们要查询上图结构中是否包含元素35,步骤如下:

  1. 定位元素35处所处桶的位置,Index = 35 % 16 = 3;
  2. 在3号桶所指向的链表中继续查找,发现35在链表中。

上面就是 HashMap 底层数据结构的原理,HashMap 基本操作就是对拉链式散列算法基本操作的一层包装。

3. 源码分析

本文基于JDK 1.8的源码进行分析。与JDK 1.7相比,JDK 1.8对HashMap进行了一些优化。比如引入红黑树解决长链表 效率低的问题。重写resize方法,实现resize的时候保证数据存储的顺序不变。

3.1 构造方法

3.1.1 构造方法分析

查看源代码发现HashMap的构造方法只有四个。初始化一些重要的变量如loadFactor和threshold。而底层的数据结构则是延迟到插入健值对时再初始化。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/** 构造方法 1 */
public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
}
/** 构造方法 2 */
public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/** 构造方法 3 */
public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
/** 构造方法 4 */
public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
}

上述四个构造方法中,用的最多的是第3个了。第3个构造方法很简单,仅仅将loadFactor变量设置为默认值。 构造方法2调用了构造方法构造方法1,构造方法1则设置了initialCapacity和loadFactor。构造方法4则是 将另一个Map中的映射拷贝一份到自己的存储结构来。

3.1.2 初始容量、负载因子、阈值

一般情况下,我们采用无参构造函数创建HashMap。但是当我们对其时间和空间复杂度有要求的时候,使用默认值达不到我们的要求时,需要手动设置参数。 我们可以调整的参数有两个:初始容量initialCapacity 和 负载因子loadFactor。设置这两个参数,可以影响阈值的大小。阈值threshold仅由initialCapacity 经过tableSizeFor(int cap)方法通过位运算计算得出。

名称 用途
initialCapacity HashMap的初始容量
loadFactor 负载因子
threshold 当前HashMap所能容纳键值对数量的最大值,超过时需要扩容

相关代码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
/** The default initial capacity - MUST be a power of two. */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

/** The load factor used when none specified in constructor. */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

final float loadFactor;

/** The next size value at which to resize (capacity * load factor). */
int threshold;

如果大家去看源码,会发现 HashMap 中没有定义 initialCapacity 这个变量。这个也并不难理解,从参数名上可看出,这个变量表示一个初始容量, 只是构造方法中用一次,没必要定义一个变量保存。但如果大家仔细看上面 HashMap 的构造方法,会发现存储键值对的数据结构并不是在构造方法里初始化的。

默认情况下,HashMap 初始容量是16,负载因子为 0.75。这里并没有默认阈值,原因是阈值可由容量乘上负载因子计算而来 (注释中有说明),即threshold = capacity * loadFactor。具体计算是通过方法tableSizeFor(int cap)实现,源码如下:

1
2
3
4
5
6
7
8
9
static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

以上代码总结起来就一句话:找到大于或等于 cap 的最小2的幂 ————> 即要求HashMap的桶容量大小必须是2的幂次方,具体原因下面会讲。

接下来为负载因子(loadFactor)。对于HashMap来说,负载因子是一个很重要的参数,反映了Hash桶数组的使用情况(假设键值对均匀分布在桶数组中)。 通过调节负载因子,可使 HashMap 时间和空间复杂度上有不同的表现。当我们调低负载因子时,HashMap 所能容纳的键值对数量变少。 扩容时,重新将键值对存储新的桶数组里,键的键之间产生的碰撞会下降,链表长度变短。 此时,HashMap 的增删改查等操作的效率将会变高,这里是典型的拿空间换时间。相反,如果增加负载因子(负载因子可以大于1),HashMap 所能容纳的键值对数量变多, 空间利用率高,但碰撞率也高。这意味着链表长度变长,效率也随之降低,这种情况是拿时间换空间。一般情况下我们用的是默认值0.75f,在时空上能够能够很好的平衡 取舍。

3.2 查找

HashMap的查找方法,先定位键值对所在的桶的位置,然后在对链表或红黑树进行查找。相关代码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // 1. 定位键值对所在桶的位置
        if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
        ((k = first.key) == key || (key != null && key.equals(k))))
        return first;
        if ((e = first.next) != null) {
        // 2. 如果 first 是 TreeNode 类型,则调用黑红树查找方法
        if (first instanceof TreeNode)
        return ((TreeNode<K,V>)first).getTreeNode(hash, key);

        // 2. 对链表进行查找
        do {
        if (e.hash == hash &&
        ((k = e.key) == key || (key != null && key.equals(k))))
        return e;
        } while ((e = e.next) != null);
        }
        }
        return null;
        }

查找的核心逻辑封装在getNode方法中。我们先来看看查找过程的第一步 - 确定桶位置,其实现代码如下:

1
2
// index = (n - 1) & hash
first = tab[(n - 1) & hash]

通过(n - 1) & hash即可算出桶的在桶数组的位置:HashMap中桶数组的大小length总是2的幂次,故 n-1 操作把int个4个字节每个位变为1,再与hash值取与运算, 我们知道二进制中和1位与运算的结果就是原值,所以此时,(n - 1) & hash等价于对length取余得到数组的索引值。但是取余的计算效率没有位运算高,所以(n - 1) & hash也是一个小的优化。 比如:假设 hash = 185,n = 16。计算过程示意图如下: 当hash桶扩容后,(n-1)最高位从0变成1,计算后的索引值要么保持原位不变,要么索引值*2。所以原来的同一个桶的链表拆成新的两个链表到两个不同的桶。

在上面源码中,除了查找相关逻辑,还有一个计算 hash 的方法。这个方法源码如下:

1
2
3
4
5
6
7
/**
 * 计算键的 hash 值
 */
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

这里没有采用每个类自带的hashCode()方法,主要有以下两点考虑:

  1. 加大低位信息的随机性,使哈希桶的元素分布更均匀。
  2. 增加 hash 的复杂度

我们再看一下上面求余的计算图,图中的 hash 是由键的 hashCode 产生。计算余数时,由于 n 比较小,hash 只有低4位参与了计算,高位的计算可以认为是无效的。 这样导致了计算结果只与低位信息有关,高位数据没发挥作用。为了处理这个缺陷,我们可以上图中的 hash 高4位数据与低4位数据进行异或运算,即 hash ^ (hash »> 4)。 通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。此时的计算过程如下: 在 Java 中,hashCode 方法产生的 hash 是 int 类型,32 位宽。前16位为高位,后16位为低位,所以要右移16位。

当我们覆写 hashCode 方法时,可能会写出分布性不佳的 hashCode 方法,进而导致 hash 的冲突率比较高。 通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。这也就是为什么 HashMap 不直接使用键对象原始 hash 的原因了。

3.3 遍历

和查找查找一样,遍历操作也是大家使用频率比较高的一个操作。对于 遍历 HashMap,我们一般都会用下面的方式:

1
2
3
for(Object key : map.keySet()) {
    // do something
}

或者

1
2
3
for(HashMap.Entry entry : map.entrySet()) {
    // do something
}

也可以采用迭代器进行遍历:

1
2
3
4
5
6
Set keys = map.keySet();
Iterator ite = keys.iterator();
while (ite.hasNext()) {
    Object key = ite.next();
    // do something
}

大家在遍历 HashMap 的过程中会发现,多次对 HashMap 进行遍历时,遍历结果顺序都是一致的。但这个顺序和插入的顺序一般都是不一致的。为什么?以下为部分源代码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
public Set<K> keySet() {
    Set<K> ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}

/**
 * 键集合
 */
final class KeySet extends AbstractSet<K> {
    public final int size()                 { return size; }
    public final void clear()               { HashMap.this.clear(); }
    public final Iterator<K> iterator()     { return new KeyIterator(); }
    public final boolean contains(Object o) { return containsKey(o); }
    public final boolean remove(Object key) {
        return removeNode(hash(key), key, null, false, true) != null;
    }
    // 省略部分代码
}

/**
 * 键迭代器
 */
final class KeyIterator extends HashIterator 
    implements Iterator<K> {
    public final K next() { return nextNode().key; }
}

abstract class HashIterator {
    Node<K,V> next;        // next entry to return
    Node<K,V> current;     // current entry
    int expectedModCount;  // for fast-fail
    int index;             // current slot

    HashIterator() {
        expectedModCount = modCount;
        Node<K,V>[] t = table;
        current = next = null;
        index = 0;
        if (t != null && size > 0) { // advance to first entry 
            // 寻找第一个包含链表节点引用的桶
            do {} while (index < t.length && (next = t[index++]) == null);
        }
    }

    public final boolean hasNext() {
        return next != null;
    }

    final Node<K,V> nextNode() {
        Node<K,V>[] t;
        Node<K,V> e = next;
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        if (e == null)
            throw new NoSuchElementException();
        if ((next = (current = e).next) == null && (t = table) != null) {
            // 寻找下一个包含链表节点引用的桶
            do {} while (index < t.length && (next = t[index++]) == null);
        }
        return e;
    }
    //省略部分代码
}

如上面的源码,遍历所有的键时,首先要获取键集合KeySet对象,然后再通过 KeySet 的迭代器KeyIterator进行遍历。KeyIterator 类继承自HashIterator类, 核心逻辑也封装在 HashIterator 类中。HashIterator 的逻辑并不复杂,在初始化时,HashIterator 先从桶数组中找到包含链表节点引用的桶。 然后对这个桶指向的链表进行遍历。遍历完成后,再继续寻找下一个包含链表节点引用的桶,找到继续遍历。找不到,则结束遍历。举个例子,假设我们遍历下图的结构: HashIterator 在初始化时,会先遍历桶数组,找到包含链表节点引用的桶,对应图中就是3号桶。随后由 nextNode 方法遍历该桶所指向的链表。 遍历完3号桶后,nextNode 方法继续寻找下一个不为空的桶,对应图中的7号桶。之后流程和上面类似,直至遍历完最后一个桶。 以上就是 HashIterator 的核心逻辑的流程,对应下图: 遍历上图的最终结果是 19 -> 3 -> 35 -> 7 -> 11 -> 43 -> 59。

3.4 插入

3.4.1 插入逻辑分析

插入流程如下:首先肯定是先定位要插入的键值对属于哪个桶,定位到桶后,再判断桶是否为空。如果为空,则将键值对存入即可。如果不为空,则需将键值对接在链表最后一个位置,或者更新键值对。 以下为插入操作的源码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 初始化桶数组 table,table 被延迟到插入新数据时再进行初始
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 如果桶中不包含键值对节点引用,则将新键值对节点的引用存入桶中即可
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            // 对链表进行遍历,并统计链表长度
            for (int binCount = 0; ; ++binCount) {
            // 链表中不包含要插入的键值对节点时,则将该节点接在链表的最后
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                // 如果链表长度大于或等于树化阈值,则进行树化操作
                if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                    treeifyBin(tab, hash);
                break;
                }
                // 条件为 true,表示当前链表包含要插入的键值对,终止遍历
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }

        // 判断要插入的键值对是否存在 HashMap 中
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
        // onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
        if (!onlyIfAbsent || oldValue == null)
            e.value = value;
        afterNodeAccess(e);
        return oldValue;
        }
    }
    ++modCount;
    // 键值对数量超过阈值时,则进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

插入操作的入口方法是 put(K,V),但核心逻辑在V putVal(int, K, V, boolean, boolean) 方法中。putVal 方法主要做了这么几件事情:

  1. 当桶数组 table 为空时,通过扩容的方式初始化 table
  2. 查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值
  3. 如果不存在,则将键值对链入链表中,并根据链表长度(一般为8,服从分布)决定是否将链表转为红黑树
  4. 判断键值对数量是否大于阈值,大于的话则进行扩容操作

3.4.2 扩容机制

在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量超过阈值时,进行扩容。 HashMap 的扩容机制与其他变长集合的套路不太一样,HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。 扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去。以上就是 HashMap 的扩容大致过程,接下来我们来看看具体的实现:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    // 如果 table 不为空,表明已经初始化过了
    if (oldCap > 0) {
        // 当 table 容量超过容量最大值,则不再扩容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        } 
        // 按旧容量和阈值的2倍计算新容量和阈值的大小
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    } else if (oldThr > 0) // initial capacity was placed in threshold
        /*
         * 初始化时,将 threshold 的值赋值给 newCap,
         * HashMap 使用 threshold 变量暂时保存 initialCapacity 参数的值
         */ 
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        /*
         * 调用无参构造方法时,桶数组容量为默认容量,
         * 阈值为默认容量与默认负载因子乘积
         */
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    
    // newThr 为 0 时,按阈值计算公式进行计算
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    // 创建新的桶数组,桶数组的初始化也是在这里完成的
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 如果旧的桶数组不为空,则遍历桶数组,并将键值对映射到新的桶数组中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 重新映射时,需要对红黑树进行拆分
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 遍历链表,并将链表节点按原顺序进行分组
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 将分组后的链表映射到新桶中
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

上面的源码总共做了3件事,分别是:

  1. 计算新桶数组的容量 newCap 和新阈值 newThr
  2. 根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的
  3. 将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组。

3.4.3 链表树化、红黑树链化与拆分

JDK 1.8 对 HashMap 实现进行了改进。最大的改进莫过于在引入了红黑树处理频繁的碰撞,代码复杂度也随之上升。 比如,以前只需实现一套针对链表操作的方法即可。而引入红黑树后,需要另外实现红黑树相关的操作。红黑树是一种自平衡的二叉查找树,本身就比较复杂。 这个待我以后知识提升了再行扩展0-0.

3.5 删除

HashMap 的删除操作并不复杂,包括三个步骤。

  1. 定位桶位置。
  2. 遍历链表并找到键值相等的节点。
  3. 删除节点。

相关源码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        // 1. 定位桶位置
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        // 如果键的值与链表第一个节点相等,则将 node 指向该节点
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {  
            // 如果是 TreeNode 类型,调用红黑树的查找逻辑定位待删除节点
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                // 2. 遍历链表,找到待删除节点
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        
        // 3. 删除节点,并修复链表或红黑树
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

4 其他细节

transient修饰的table变量

桶数组 table 被申明为 transient。transient 表示易变的意思,在 Java 中,被该关键字修饰的变量不会被默认的序列化机制序列化。

但是,桶数组 table 是 HashMap 底层重要的数据结构,不序列化的话,该如何还原? HashMap存储的是键值对,只需要把键值对序列化了,就可以更具键值对数据重建HashMap。但是如果序列化table会带来问题:

  1. table 多数情况下是无法被存满的,序列化未使用的部分,浪费空间
  2. 同一个键值对在不同 JVM 下,所处的桶位置可能是不同的,在不同的 JVM 下反序列化 table 可能会发生错误。

HashMap 的get/put/remove等方法第一步就是根据 hash 找到键所在的桶位置,但如果键没有覆写 hashCode 方法,计算 hash 时最终调用 Object 中的 hashCode 方法。 但 Object 中的 hashCode 方法是 native 型的,不同的 JVM 下,可能会有不同的实现,产生的 hash 可能也是不一样的。

5 总结

入操作一节的内容说的最多,主要是因为插入操作涉及的点特别多,一环扣一环。包含但不限于“table 初始化、扩容、树化”等,总体来说,插入操作最复杂,也难~ 希望以后还能够记住理解这些。红黑树因为结构复杂,它的增删查改操作就没有在这个有限的篇幅下写了~